Thoughtful and effective **planning** throughout the school year is crucial for student mastery of standards. Once a standard is introduced, it is understood that the standard is continuously taught and/or reviewed throughout the entire school year (e.g., explicit instruction, learning centers, IXL, etc.)

<table>
<thead>
<tr>
<th>First Nine Weeks</th>
<th>Second Nine Weeks</th>
<th>Third Nine Weeks</th>
<th>Fourth Nine Weeks</th>
</tr>
</thead>
</table>
| **Operations and Algebraic Thinking:**
3.OA.1-Interpret products of whole numbers, e.g., interpret 5 x 7 as the total number of objects in 5 groups of 7 objects each. (0-2)
3.OA.7-Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that 8 x 5 = 40, one knows 40 ÷ 8 = 5) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.
3.OA.9-Identify arithmetic patterns (including patterns in) | **Operations and Algebraic Thinking:**
*3.OA.1-Interpret products of whole numbers, e.g., interpret 5 x 7 as the total number of objects in 5 groups of 7 objects each. (11-12)
*3.OA.2-Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each.
3.OA.3-Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
3.OA.4-Determine the unknown whole number in a multiplication or division equation relating three whole numbers. | **Operations and Algebraic Thinking:**
3.MD.1-Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.
3.MD.2-Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve | **Measurement and Data:**
3.MD.4-Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units – whole numbers, halves, or quarters.
3.MD.5-Recognize area as an attribute of plane figures and understand concepts of area measurement.
3.MD.5a-A square with size length 1 unit, called “a unit square,” is said to have “one square unit” of area, and can be used to measure area.
3.MD.5b-Recognize area as an attribute of plane figures and understand concepts of area measurement. A plane figure which can be covered without gaps or overlaps by \(n \) unit square is said to have an area of \(n \) square units
3.MD.6-Measure areas by counting unit squares (Square cm, |
addition table or multiplication table), and explain them using properties of operations.

Number and Operations in Base Ten:
- **3.NBT.1** - Use place value understanding to round whole numbers to the nearest 10 to 100.
- **3.NBT.2** - Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
- **3.NBT.3** - Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 x 80, 5 x 60) using strategies based on place value and properties of operations.

Measurement and Data:
- **3.OA.5** - Apply properties of operations as strategies to multiply and divide.
- **3.OA.6** - Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.
- **3.OA.8** - Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
- **3.OA.9** - Identify arithmetic patterns (including patterns in addition table or multiplication table), and explain them using properties of operations.

Number and Operations in Base Ten:
- **3.OA.5** - Apply properties of operations as strategies to multiply and divide.
- **3.OA.6** - Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.
- **3.OA.8** - Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
- **3.OA.9** - Identify arithmetic patterns (including patterns in addition table or multiplication table), and explain them using properties of operations.

Number and Operations – Fractions:
- **3.NF.1** - Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b.
- **3.NF.2** - Understand a fraction as a number on the number line; represent fractions on a number line diagram.
- **3.NF.2a** - Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning into b equal parts. Recognize that each part has size 1/b and that the endpoint of part based at 0 locates the number 1/b on
<table>
<thead>
<tr>
<th>3.MD.3-Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.NF.2b-Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.</td>
</tr>
<tr>
<td>3.NF.3-Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.</td>
</tr>
<tr>
<td>3.NF.3a-Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.</td>
</tr>
<tr>
<td>3.NF.3b- Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3. Explain why the fractions are equivalent, e.g., by using a visual fraction model.</td>
</tr>
<tr>
<td>3.NF.3c- Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers.</td>
</tr>
<tr>
<td>3.NF.3d-Compare two fractions with the same numerator of the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, and justify the conclusions, e.g., by using a visual fraction model.</td>
</tr>
<tr>
<td>3.G.1-Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.</td>
</tr>
<tr>
<td>3.G.2- Partition shapes into parts with different areas. Express the area of each part as a unit fraction of the whole</td>
</tr>
</tbody>
</table>

*Standard introduced early and tested later.