Thoughtful and effective planning throughout the school year is crucial for student mastery of standards. Once a standard is introduced, it is understood that the standard is continuously taught and/or reviewed throughout the entire school year (e.g., explicit instruction, learning centers, IXL, etc.).

First Nine Weeks
Operations and Algebraic Thinking:
1.OA.1-Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
1.OA.2-Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
1.OA.3-Apply properties of operations as strategies to add and subtract. (Students need not use formal terms for these properties.)
1.OA.4-Understand subtraction as an unknown-addend problem.
1.OA.5-Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).
1.OA.6-Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows knowing that 8 + 4 = 12, one knows

Second Nine Weeks
Operations and Algebraic Thinking:
1.OA.1-Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
1.OA.2-Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
1.OA.3-Apply properties of operations as strategies to add and subtract. (Students need not use formal terms for these properties.)
1.OA.4-Understand subtraction as an unknown-addend problem.
1.OA.5-Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).
1.OA.6-Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows knowing that 8 + 4 = 12, one knows

Third Nine Weeks
Operations and Algebraic Thinking:
1.OA.1-Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
1.OA.2-Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
1.OA.3-Apply properties of operations as strategies to add and subtract. (Students need not use formal terms for these properties.)
1.OA.4-Understand subtraction as an unknown-addend problem.
1.OA.5-Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).
1.OA.6-Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows knowing that 8 + 4 = 12, one knows

Fourth Nine Weeks
Operations and Algebraic Thinking:
1.OA.1-Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
1.OA.2-Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
1.OA.3-Apply properties of operations as strategies to add and subtract. (Students need not use formal terms for these properties.)
1.OA.4-Understand subtraction as an unknown-addend problem.
1.OA.5-Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).
1.OA.6-Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows knowing that 8 + 4 = 12, one knows

Numbers and Operations in Base Ten:
1.NBT.5-Given a two-digit number, mentally find 10 more or 10 less than the number without having to count; explain the reasoning used.
1.NBT.6-Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method, and explain the reasoning used.

Measurement and Data:
1.MD.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object.
1.MD.2 Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an
12 – 8 = 4); and creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13).

1.OA.7-Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false.

1.OA.8-Determine the unknown whole number in an addition or subtraction equation relating three whole numbers.

Numbers and Operations in Base Ten:

1.NBT.1-Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.

1.NBT.2-Understand that the two digits of a two-digit number represent amounts of tens and ones.

1.NBT.2a-Ten can be thought of as a bundle of ten ones, called a “ten.”

1.NBT.2b-The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.

1.NBT.2c-The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).

1.OA.8-Determine the unknown whole number in an addition or subtraction equation relating three whole numbers.

Numbers and Operations in Base Ten:

1.OA.7-Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false.

1.OA.8-Determine the unknown whole number in an addition or subtraction equation relating three whole numbers.

Geometry:

1.G.1-Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.

1.G.2-Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. (Students do not need to learn formal names such as “right rectangular prism.”)

1.G.3-Partition circles and rectangles into two and four equal shares; describe the shares using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of.
<table>
<thead>
<tr>
<th>1.NBT.5</th>
<th>Given a two-digit number, mentally find 10 more or 10 less than the number without having to count; explain the reasoning used.</th>
<th>Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.MD.3</td>
<td>Tell and write time in hours and half-hours using analog and digital clocks.</td>
<td></td>
</tr>
</tbody>
</table>