Jasper City Schools
 $8^{\text {th }}$ Grade Advanced Pre-Algebra Pacing Guide 08.14.2018

8th Grade - Advanced Pre-Algebra: Algebra standards will be worked in with the 8th Grade Pre-Algebra standards where they apply.

First Nine Weeks

3.) Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational [N-RN3\}
4.) Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays [N-Q1\}
5.) Define appropriate quantities for the purpose of descriptive modeling. [$\mathrm{N}-\mathrm{Q} 2$]
6.) Choose a level of accuracy appropriate to limitations on measurement when reporting quantities [NQ-3]

Second Nine Weeks

1.) Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notion for radicals in terms of rational exponents. [N-RN1]
2.) Rewrite expressions involving radicals and rational exponents using the properties of exponents. [N-RN2]
13.) Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2]
19.) Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. [A-REI6\}

Third Nine Weeks

8.) Use the structure of an expression to identify ways to rewrite it. [A-SSE2]
9.) Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. * [A-SSE3] a. Factor a quadratic expression to reveal the zeros of the function it defines. [A-SSE3a]
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. [A-SSE3b]
c. Determine a quadratic equation when given its graph or roots.
d. use the properties of exponents to transform expressions for exponential functions [A-SSE3c]
10.) Understand that polynomials form a system analogous to the integers; namely, they are closed under the operations of addition, subtraction, and multiplication; add,

Fourth Nine Weeks

11. (*) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions. [A-APR7]
21.) Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. [AREI7]
33.) Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [F-IF9]
35.) Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between tow forms. * [F-BF2]
7.) Interpret expressions that represent a quantity in terms of its context. *[A-SSE1]
a. Interpret parts of an expression such as terms, factors, and coefficients. [A-SSE1a] Example: interpret $P(1+\mathrm{r})^{\mathrm{n}}$ as a product of P and a factor not depending on P.
12.) Create equations and inequalities in one variable, and use them to solve problems. Include equations arising from linear and quadratic functions and simple rational and exponential functions. [A-CED1]
16.) Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. [A-REI3]
20.) Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables [AREI6]
22.) Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane often forming a curve (which could be a line). [A-REI10]
23.)Explain why the $x-$ coordinates of the points where the graphs of the equations $\mathrm{y}=$ $f(x)$ and $\mathrm{y}=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. * [AREI11]
24.) Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the
subtract, and multiply polynomials [A-APRI]
14.) Represent constraints by equations or inequalities and by systems of equations and/or inequalities and interpret solutions as viable or non-viable options in a modeling context. [A-CED3]
18.) Solve quadratic equations in one variable. [A-REI4]
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form. [A-REI4a]
b. Solve quadratic equations by inspection (e.g., for $x=49$), taking square roots, completing the square and the quadratic formula, and factoring as appropriate to the initial form of the equation. [A-REI4b]
34.) Write a function that describes a relationship between two quantities.

* [F-BF1]
a. Determine an explicit expression,
a recursive process, or steps for calculation from a context. [F-BF1a] b. Combine standard function types using arithmetic operations. [FBF1b]
37.) Distinguish between situations that can be modeled with linear
38.) Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description, of a relationship, or two input-output pairs (include reading these from a table). [F-LE2]
39.) Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. [F-LE3]
41.) Represent data with plots on the real number line (dot plots, histograms, and box plots0. [S-1D1]
42.) Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. [S-ID2]
43.) Interpret differences in shape center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). [S-ID3]
44.) Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and
corresponding half-planes [AREI12]
25.) Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $\mathrm{f}(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=\mathrm{f}(x)$. [F-FIF1]
26.) Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. [FIF2]
27.) Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. [F-FIF3]
29.) Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. * [FIFS]
30.) Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified
functions and with exponential functions. [F-LE1]
a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. [F-LE1a]
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. [F-LE1b]
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. [F-LE1c]
conditional relative frequencies) Recognize possible associations and trends in the data. [S-ID5]
45.) Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [S-ID6]
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Uses given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. [S-ID6a]
b. Informally assess the fit of a function by plotting and analyzing residuals. [S-ID6b]
c. Fit a linear function for a scatter plot that suggests a linear association. [S-ID6c]
46.) Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [S-ID7]
47.) Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. [S-CP2]

| | interval. Estimate the rate of
 change from a graph. $*[F-I F 6]$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Power Standards

** Power standards are indicated with an asterisk **
These standards are those that are essential for student grade-level success.

