4th Grade Math Pacing Guide

9.20.2018

First 9 Weeks	Second 9 Weeks	Third 9 Weeks	Fourth 9 Weeks
Operations and Algebraic	Number and Operations	Number and Operations –	Measurement and Data:
Thinking:	<u>in Base Ten:</u>	Fractions:	4.MD.2 – Use the four
4.0A.1 – Interpret a	4.NBT.4 – Fluently add	4.NF.1 – Explain why a	operations to solve word
multiplication equation as	and subtract multi-digit	fraction a/b is equivalent to	problems involving
a comparison, e.g.,	whole numbers using	a fraction (nxa)/(nxb) by	distances, intervals of
interpret 35=5x7 as a	the standard algorithm.	using visual fraction	time, liquid volumes,
statement that 35 is 5	4.NBT.5 – Multiply a	models, with attention to	masses of objects, and
times as many as 7 and 7	whole number of up to	how the number and size	money, including
times as many as 5.	four digits by one-digit	of the parts differ even	problems involving simple
Represent verbal	whole number, multiply	though the two fractions	fractions or decimals, and
statements of	two two-digit numbers,	themselves are the same	problems that require
multiplicative	using strategies based	size. Use this principle to	expressing measurements
comparisons as	on place value and the	recognize and generate	given in a larger unit in
multiplication equations.	properties of operations.	equivalent fractions.	terms of a smaller unit.
4.OA.2 (multiplication) –	Illustrate and explain the	4.NF.2 – Compare two	Represent measurement
Multiply to solve word	calculations by using	fractions with different	quantities using diagrams
problems involving	equations, rectangular	numerators and different	such as number line
multiplicative	arrays, and/or area	denominators, e.g., by	diagrams that feature a
comparison, e.g., by using	models.	creating common	measurement scale.
drawings and equations	4.NBT.6 – Find whole-	denominators or	4.MD.3 – Apply the area
with a symbol for the	number quotients and	numerators or by	and perimeter of formulas

unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. 4.OA.3 (multiplication) -Solve multi-step word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing fort the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. 4.OA.4 – Find all factor pairs for a whole number in the range 1-100.

remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. **Operations and Algebraic Thinking:** 4.OA.2 (division) -Divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown

number to represent the

problem, distinguishing

multiplicative

comparing to a benchmark fraction such as $\frac{1}{2}$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >,<, or = and justify the conclusions, e.g., by using a visual fraction model. 4.NF.3 – Understand a fraction a/b with a>1 as a sum of fractions 1/b. 4.NF.3a – Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. 4.NF.3b – Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by

for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. 4.MD.5 – Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement. 4.MD.5a – An angle is measured with reference to a circle with its center at the common endpoint of the rays considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that runs through

Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given onedigit number. Determine whether a given whole number in the range 1-100 is prime or composite. **4.0A.5** – Generate a

4.0A.5 – Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain

comparison from additive comparison. 4.OA.3 (division) - Solve multi-step word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing fort the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. Geometry: 4.G.1 – Draw points, lines, line segments, rays, angles (right, acute,

obtuse), and

using a visual fraction model.

4.NF.3c – Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.

4.NF.3d – Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

4.NF.4 – Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.

4.NF.4a – Understand a

1/360 of a circle is called a "one degree angle" and can be used to measure angles. 4.MD.5b – An angle that turns through n one degree angles is said to have an angle measure of n degrees. **4.MD.6** – Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. **4.MD.7** – Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtractions problems to find unknown angles on a diagram in real world and mathematical problems,

informally why the	perpendicular and	fraction a/b as a multiple of	e.g., by using an equation
numbers will continue to	parallel lines. Identify	1/b.	with a symbol for the
alternate this way.	these in two-	4.NF.4b – Understand a	unknown angle measure.
Number and Operations	dimensional figures.	multiple of a/b as a	Measurement and Data:
in Base Ten:	4.G.2 – Classify two-	multiple of 1/b, and use	4.MD.1 – Know relative
4.NBT.1 – Recognize that	dimensional figures	this understanding to	sizes of measurement
in a multi-digit whole	based on the presence	multiply a fraction by a	units within one system of
number, a digit in one	or absence of parallel or	whole number.	units including km, m, cm;
place represents ten	perpendicular lines, or	4.NF.4c – Solve word	kg, g, lb, oz; l, ml; hr, min,
times what it represents	the presence or absence	problems involving	sec. Within a single
in the place to its right.	of angles of a specified	multiplication of a fraction	system of measurement,
For example, recognize	size. Recognize right	by a whole number, e.g., by	express measurements in
that 700 / 70=10 by	triangles as a category,	using visual fraction models	a larger unit in terms of a
applying concepts of	and identify right	in equations to represent a	smaller unit. Record
place value and division.	triangles.	problem.	measurement equivalents
4.NBT.2 – Read and write	4.G.3 – Recognize a line	4.NF.5 – Express a fraction	in a two column tale. For
multi-digit whole	of symmetry for a two-	with denominator 10 as an	example, know that 1 ft.
numbers using base-ten	dimensional figure as a	equivalent fraction with	is 12 times as long as 1 in.
numerals, number names,	line across the figure	denominator 100, and use	Express the length of a 4
and expanded form.	such that the figure can	this technique to add two	ft. snake as 48 inches.
Compare two multi-digit	be folded along the line	fractions with respective	Generate a conversion
numbers based on	into matching parts.	denominators 10 and 100.	table for feet and inches
meanings of the digits in	Identify line-symmetric	For example, express 3/10	listing the number pairs
each place, using >, <, and	figures and draw lines of	as 30/100, and add 3/10 +	(1,12), (2,24), (3,36),
= symbols to record the	symmetry.	4/100=34/100.	4.MD.4 – Make a line plot
results of comparison.		4.NF.6 – Use decimal	to display a data set of
		notation for fractions with	measurements in

denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram. 4.NF.7 – Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols.	fractions of a unit (1/2, ¼, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.
symbols.	