Jasper City Schools 8th Physical Science Pacing Guide 08.14.2018

First Nine Weeks	Second Nine Weeks	Third Nine Weeks	Fourth Nine Weeks
 Analyze patterns within the periodic table to construct models (e.g., molecular-level models, including drawings; computer representations) that illustrate the structure, composition, and characteristics of atoms and molecules. Plan and carry out investigations to generate evidence supporting the claim that one pure substance can be distinguished from another based on characteristic properties. Design and conduct an experiment to determine changes in particle motion, temperature, and state of a pure substance when thermal energy is added to or removed from a system. Observe and analyze characteristic properties of substances (e.g., odor, density, solubility, flammability, melting point, boiling point) before and after the substances combine to determine if a chemical reaction has occurred. 	 3.) Construct explanations based on evidence from investigations to differentiate among compounds, mixtures, and solutions. a. Collect and analyze information to illustrate how synthetic materials (e.g., medicine, food additives, alternative fuels, plastics) are derived from natural resources and how they impact society. 6.) Create a model, diagram, or digital simulation to describe conservation of mass in a chemical reaction and explain the resulting differences between products and reactants. 7.) Design, construct, and test a device (e.g., glow stick, hand warmer, hot or cold pack, thermal wrap) that either releases or absorbs thermal energy by chemical reactions (e.g., dissolving ammonium chloride or calcium chloride in water) and modify the 	 8.) Use Newton's first law to demonstrate and explain that an object is either at rest or moves at a constant velocity unless acted upon by an external force (e.g., model car on a table remaining at rest until pushed). 9.) Use Newton's second law to demonstrate and explain how changes in an object's motion depend on the sum of the external forces on the object and the mass of the object (e.g., billiard balls moving when hit with a cue stick). 10.) Use Newton's third law to design a model to demonstrate and explain the resulting motion of two colliding objects (e.g., two cars bumping into each other, a hammer hitting a nail).* 11.) Plan and carry out investigations to evaluate how various factors (e.g., electric force produced between two charged objects at various positions; magnetic force produced by an 	 17.) Create and manipulate a model of a simple wave to predict and describe the relationships between wave properties (e.g., frequency, amplitude, wavelength) and energy. a. Analyze and interpret data to illustrate an electromagnetic spectrum. 18.) Use models to demonstrate how light and sound waves differ in how they are absorbed, reflected, and transmitted through different types of media. 19.) Integrate qualitative information to explain that common communication devices (e.g., cellular telephones, radios, remote controls, Wi-Fi components, global positioning systems [GPS], wireless technology

15.) Analyze and interpret data from	device as needed based on criteria	electromagnet with varying	components) use
experiments to determine how various	(e.g., amount/concentration, time,	number of wire turns, varying	electromagnetic waves to
factors affect energy transfer as measured	temperature).*	number or size of dry cells, and	encode and transmit
by temperature (e.g., comparing final		varying size of iron core) affect	information.
water temperatures after different masses		the strength of electric and	
of ice melt in the same volume of water		magnetic forces.	
with the same initial temperature,		12.) Construct an argument from	
observing the temperature change of		evidence explaining that fields exist	
samples of different materials with the		between objects exerting forces on	
same mass and the same material with		each other (e.g., interactions of	
different masses when adding a specific		magnets, electrically charged strips	
amount of energy).		of tape, electrically charged pith	
		balls, gravitational pull of the moon	
		creating tides) even when the	
		objects are not in contact.	
		13.) Create and analyze graphical	
		displays of data to illustrate the	
		relationships of kinetic energy to	
		the mass and speed of an object	
		(e.g., riding a bicycle at different	
		speeds, hitting a table tennis ball	
		versus a golf ball, rolling similar	
		toy cars with different masses	
		down an incline).	
		14.) Use models to construct an	
		explanation of how a system of	
		objects may contain varying types	
		and amounts of potential energy	
		(e.g., observing the movement of	
		a roller coaster cart at various	
		inclines, changing the tension in a	
		rubber band, varying the number	
		of batteries connected in a series,	
		observing a balloon with static	
		electrical charge being brought	
		closer to a classmate's hair).	

	16.) Apply the law of conservation of energy to develop arguments supporting the claim that when the kinetic energy of an object changes, energy is transferred to or from the object (e.g., bowling ball hitting pins, brakes being applied to a car).	
--	---	--

Power Standards*

*The standards that are essential for student grade-level success. They represent those standards teachers will spend the most time emphasizing.

1.) Analyze patterns within the periodic table to construct models (e.g., molecular-level models, including drawings; computer representations) that illustrate the structure, composition, and characteristics of atoms and molecules.

6.) Create a model, diagram, or digital simulation to describe conservation of mass in a chemical reaction and explain the resulting differences between products and reactants.

8.) Use Newton's first law to demonstrate and explain that an object is either at rest or moves at a constant velocity unless acted upon by an external force (e.g., model car on a table remaining at rest until pushed).

9.) Use Newton's second law to demonstrate and explain how changes in an object's motion depend on the sum of the external forces on the object and the mass of the object (e.g., billiard balls moving when hit with a cue stick).

10.) Use Newton's third law to design a model to demonstrate and explain the resulting motion of two colliding objects (e.g., two cars bumping into each other, a hammer hitting a nail).*

13.) Create and analyze graphical displays of data to illustrate the relationships of kinetic energy to the mass and speed of an object (e.g., riding a bicycle at different speeds, hitting a table tennis ball versus a golf ball, rolling similar toy cars with different masses down an incline).