Jasper City Schools Third Grade Math Pacing Guide 9.20.2018

- Thoughtful and effective **planning** throughout the school year is crucial for student mastery of standards.
- Once a standard is introduced, it is understood that the standard is continuously taught and/or reviewed throughout the <u>entire</u> school year (e.g., explicit instruction, learning centers, IXL, etc.)

First Nine Weeks	Second Nine Weeks	Third Nine Weeks	Fourth Nine Weeks
Operations and	Operations and Algebraic	Operations and Algebraic Thinking:	Measurement and
Algebraic Thinking:	<u>Thinking:</u>	*3.OA.1- Interpret products of whole numbers, e.g., interpret 5	Data:
3.OA.1- Interpret	*3.OA.1- Interpret products of	x 7 as the total number of objects in 5 groups of 7 objects each.	3.MD.1-Tell and
products of whole	whole numbers, e.g., interpret 5 x	(11-12)	write time to the
numbers, e.g., interpret	7 as the total number of objects in	*3.OA.2- Interpret whole-number quotients of whole numbers,	nearest minute and
5×7 as the total	5 groups of 7 objects each. (3-10)	e.g., interpret $56 \div 8$ as the number of objects in each share	measure time
number of objects in 5	3.OA.2- Interpret whole-number	when 56 objects are partitioned equally into 8 shares, or as a	intervals in minutes.
groups of 7 objects	quotients of whole numbers, e.g.,	number of shares when 56 objects are partitioned into equal	Solve word
each. (0-2)	interpret $56 \div 8$ as the number of	shares of 8 objects each.	problems involving
3.OA.7 -Fluently	objects in each share when 56		addition and
multiply and divide	objects are partitioned equally into	Measurement and Data:	subtraction of time
within 100, using	8 shares, or as a number of shares	3.MD.4 -Generate measurement data by measuring lengths	intervals in minutes,
strategies such as the	when 56 objects are partitioned	using rulers marked with halves and fourths of an inch. Show	e.g., by representing
relationship between	into equal shares of 8 objects each.	the data by making a line plot, where the horizontal scale is	the problem on a
multiplication and	3.OA.3 -Use multiplication and	marked off in appropriate units – whole numbers, halves, or	number line
division (e.g., knowing	division within 100 to solve word	quarters.	diagram.
that $8 \ge 5 = 40$, one	problems in situation s involving	3.MD.5 -Recognize area as an attribute of plane figures and	3.MD.2-Measure
knows $40 \div 5 = 8$) or	equal groups, arrays, and	understand concepts of area measurement.	and estimate liquid
properties of	measurement quantities, e.g., by	3.MD.5a -A square with size length 1 unit, called "a unit	volumes and masses
operations. By the end	using drawings and equations with	square," is said to have "one square unit" of area, and can be	of objects using
of Grade 3, know from	a symbol for the unknown number	used to measure area.	standard units of
memory all products of	to represent the problem.	3.MD.5b -Recognize area as an attribute of plane figures and	grams (g),
two one-digit numbers.	3.OA.4 -Determine the unknown	understand concepts of area measurement. A plane figure	kilograms (kg), and
3.OA.9-Identify	whole number in a multiplication	which can be covered without gaps or overlaps by <i>n</i> unit	liters (l). Add,
arithmetic patterns	or division equation relating three	square is said to have an area of <i>n</i> square units	subtract, multiply,
(including patterns in	whole numbers.	3.MD.6 -Measure areas by counting unit squares (Square cm,	or divide to solve

addition table or		square m, square in, square ft., and improvised units).	one-step word
multiplication table),		3.MD.7 -Relate area to the operations of multiplication and	problems involving
and explain them using	3.OA.5 -Apply properties of	addition.	masses or volumes
properties of	operations as strategies to multiply	3.MD.7a -Find the area of a rectangle with whole-number side	that are given tin the
operations.	and divide.	lengths by tiling it, and show that the area is the same as would	same units, e.g., by
operations.	3.OA.6 -Understand division as an	be found by multiplying the side lengths.	using drawings
Number and	unknown-factor problem. For	3.MD.7b - Multiply side lengths to find areas of rectangles	(such as a beaker
Operations in Base	example, find $32 \div 8$ by finding	with whole-number side lengths in the context of solving real	with a measurement
	the number that makes 32 when	6 6	
<u>Ten:</u> 2 NBT 1 Use also		world and mathematical problems, and represent whole-	scale) to represent
3.NBT.1 -Use place	multiplied by 8.	number products as rectangular areas in mathematical	the problem.
value understanding to	3.OA.8 -Solve two-step word	reasoning.	
round whole numbers	problems using the four	3.MD.7c -Use tiling to show in a concrete case that the area of	
to the nearest 10 to	operations. Represent these	a rectangle with whole-number side lengths a and $b + c$ is the	
100.	problems using equations with a	sum of a x b and a x c. Use area models to represent the	
3.NBT.2 Fluently add	letter standing for the unknown	distributive property in mathematical reasoning.	
and subtract within	quantity. Assess the	3.MD.7d -Recognize areas as additive. Find areas of rectilinear	
1000 using strategies	reasonableness of answers using	figures by decomposing them into non-overlapping rectangles	
and algorithms based	mental computation and estimation	and adding the areas of the non-overlapping parts, applying	
on place value,	strategies including rounding.	this technique to solve real world	
properties of	*3.OA.9 -Identify arithmetic	problems.	
operations, and/or the	patterns (including patterns in	3.MD.8 -Solve real world and mathematical problems	
relationship between	addition table or multiplication	involving perimeters of polygons, including finding the	
addition and	table), and explain them using	perimeter given the side lengths, finding an unknown side	
subtraction.	properties of operations	length, and exhibiting rectangles with the same perimeter and	
3.NBT.3-Multiply one-		different areas or with the same area and different perimeters	
digit whole numbers by	Number and Operations in Base		
multiples of 10 in the	Ten:	Number and Operations – Fractions:	
range 10-90 (e.g., 9 x	*3.NBT.3 -Multiply one-digit	3.NF.1 -Understand a fraction 1/b as the quantity formed by 1	
80, 5 x 60) using	whole numbers by multiples of 10	part when a whole is partitioned into b equal parts; understand	
strategies based on	in the range 10-90 (e.g., 9 x 80, 5 x	a fraction a/b as the quantity formed by a parts of size $1/b$.	
place value and	60) using strategies based on place	3.NF.2 -Understand a fraction as a number on the number line;	
properties of	value and properties of operations.	represent fractions on a number line diagram.	
operations.		3.NF.2a -Represent a fraction $1/b$ on a number line diagram by	
-		defining the interval from 0 to 1 as the whole and partitioning	
Measurement and	Measurement and Data:	into b equal parts. Recognize that each part has size $1/b$ and	
Data:	*3.MD.3-Draw a scaled picture	that the endpoint of part based at 0 locates the number $1/b$ on	
	r · · · · · · · · · · · · · · · · · · ·		

3.MD.3 -Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two- step "how many more" and "how many less" problems using information presented in scaled bar graphs.	graph and a scaled bar graph to represent a data set with several categories. Solve one- and two- step "how many more" and "how many less" problems using information presented in scaled bar graphs. <u>Geometry:</u> 3.G.1 -Understand that shapes in different categories (e.g., rhombuses, rectangles, and others may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	the number line. 3.NF.2b -Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line. 3.NF.3 -Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. 3.NF.3a -Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. 3.NF.3b - Recognize and generate simple equivalent fractions, e.g., $1/2 = 2/4$, $4/6 = 2/3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model. 3.NF.3d -Compare two fractions with the same numerator of the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =,., and justify the conclusions, e.g., by using a visual fraction model. Geometry: 3.G.2- Partition shapes into parts with different areas. Express	
		the area of each part as a unit fraction of the whole	

*Standard introduced early and tested later.