Jasper City Schools

Fifth Grade Math Pacing Guide

9.20.2018

1 st Nine Weeks	2 nd Nine Weeks	3rs Nine Weeks	4 th Nine Weeks
Aug. 15 -Oct. 13	Oct. 16 -Dec. 20	Jan.4 – Mar.16	Mar. 19 –May 25
Topic 1* Place Value	Topic 5* Divide by 2-	Topic 9* Adding and	Topic 15* Classifying
5.NBT.1 Recognize that	<u>Digit</u>	Subtracting Fractions	Plane Figures
in a multi-digit number,	5.NBT.6 Find whole-	5.NF.1 Add and subtract	5.G.3 Understand that
a digit in one place	number quotients of	fractions with unlike	attributes belonging to
represents 10 times as	whole numbers with up	denominators	a category of two-
much as it represents in	to four-digit dividends	(including mixed	dimensional figures also
the place to its right and	and two-digit divisors,	numbers) by replacing	belong to all
$^{1}/_{10}$ of what it	using strategies based	given fractions with	subcategories of that
represents in the place	on place value, the	equivalent fractions in	category.
to its left.	properties of	such a way as to	5.G.4 Classify two-
5.NBT.3 Read, write,	operations, and/or the	produce an equivalent	dimensional figures in a
and compare decimals	relationship between	sum or difference of	hierarchy based on
to thousandths.	multiplication and	fractions with like	properties.
5.NBT.3a Read and	division. Illustrate and	denominators.	
write decimals to	explain the calculation	5.NF.2 Solve word	Topic 16* Coordinate
thousandths using base-	by using equations,	problems involving	<u>Geometry</u>
ten numerals, number	rectangular arrays,	addition and	5.G.1 Use a pair of
names, and expanded	and/or area models.	subtraction of fractions	perpendicular number
form.		referring to the same	lines, called axes, to
5.NBT.3b Compare two	Topic 6* Multiplying	whole, including cases	define a coordinate
decimals to	<u>Decimals</u>	of unlike denominators,	system with the
thousandths based on	5.NBT.2 Explain	e.g., by using visual	intersection of the lines
meanings of the digits	patterns in the number	fraction models or	(the origin) arranged to
in each place, using >, =,	of zeros of the product	equations to represent	coincide with the 0 on
and < symbols to record	when multiplying a	the problem. Use	each line and a given
the results of	number by powers of	benchmark fractions	point in the plane
comparisons.	10, and explain patterns	and number sense of	located by using an
	in the placement of the	fractions to estimate	ordered pair of
Topic 2* Adding and	decimal point when a	mentally, and assess	numbers, called its
Subtracting Decimals	decimal is multiplied or	the reasonableness of	coordinates.
5.NBT.4 Use place value	divided by a power of	answers.	Understand that the
understanding to round	10. Use whole-number		first number indicates
decimals to any place.	exponents to denote	Topic 10* Adding and	how far to travel from
5.NBT.7 Add, subtract,	powers of 10.	Subtracting Mixed	the origin in the
multiply, and divide	5.NBT.7	<u>Numbers</u>	direction of one axis,
decimals to hundredths,	Add, subtract, multiply,	5.NF.1 Add and subtract	and the second number
using concrete models	and divide decimals to	fractions with unlike	indicates how far to
or drawings and	hundredths, using	denominators	travel in the direction of
strategies based on	concrete models or	(including mixed	the second axis, with
place value, properties	drawings and strategies	numbers) by replacing	the convention that the

of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method, and explain the reasoning used.

Topic 3* Multiplying Whole Numbers

5.NBT.2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. **5.NBT.5** Fluently multiply multi-digit whole numbers using the standard algorithm. 5.NBT.6 Find wholenumber quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays,

Topic 4* Divide by 1-Digit

and/or area models.

5.NBT.6 Find wholenumber quotients of

based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method, and explain the reasoning used.

Topic 7* Dividing Decimals

5.NBT.2 Explain
patterns in the number
of zeros of the product
when multiplying a
number by powers of
10, and explain patterns
in the placement of the
decimal point when a
decimal is multiplied or
divided by a power of
10. Use whole-number
exponents to denote
powers of 10.

5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method, and explain the reasoning used.

Topic 8* Numerical Expression, Patterns, and Relationships

5.OA.1 Use parentheses, brackets, or braces in numerical expressions, and

given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. **5.NF.2** Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally, and assess the reasonableness of answers.

Topic 11* Multiplying and Dividing Fractions and Mixed Numbers

5.NF.3 Interpret a fraction as division of the numerator by the denominator ($^a/_b = a \div$ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. **5.NF.4** Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.

names of the two axes and the coordinates correspond. **5.G.2** Represent realworld and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

Topic 12*Volume of Solids

5.MD.3 Recognize
volume as an attribute
of solid figures, and
understand concepts of
volume measurement.
5.MD.3a A cube with
side length 1 unit, called
a "unit cube," is said to
have "one cubic unit" of
volume, and can be
used to measure
volume.
5.MD.3b A solid figure

which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. 5.MD.4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. **5.MD.5** Relate volume to the operations of multiplication and addition, and solve realworld and mathematical problems involving volume. 5.MD.5a Find the volume of a right rectangular prism with

whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

evaluate expressions with these symbols.

5.OA.2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them.

5.OA.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane.

5.NF.4a Interpret the product (a/b) x q as a parts of a partition of q into *b* equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. **5.NF.4b** Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

5.NF.5 Interpret multiplication as scaling (resizing),

5.NF.5a Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. **5.NF.5b** Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case), explaining why multiplying a given number by a fraction less than 1 results in a

whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.

5.MD.5b Apply the formulas $V = I \times w \times h$ and $V = B \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems.

5.MD.5c Recognize volume as additive. Find volumes of solid figures composed of two nonoverlapping right rectangular prisms by adding the volumes of the nonoverlapping parts, applying this technique to solve realworld problems.

Topic 13* Units of Measure

5.MD.1 Convert among different-sized standard measurement units within a given measurement system and use these conversions in solving

product smaller than the given number, and relating the principle of fraction equivalence a/b= $(n \times a)/(n \times b)$ to the effect of multiplying by 1. 5.NF.6 Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem 5.NF.7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (Students able to multiply fractions in general can develop strategies to divide fractions in general by reasoning about the relationship between multiplication and division. However, division of a fraction by a fraction is not a requirement at this grade. **5.NF.7a** Interpret division of a unit fraction by a nonzero whole number, and compute such quotients. **5.NF.7b** Interpret division of a whole number by a unit fraction, and compute such quotients. **5.NF.7c** Solve realworld problems

involving division of unit

multistep, real-world problems.

Topic 14*Data

5.MD.2 Make a line plot to display a data set of measurements in fractions of a unit ($^{1}/_{2}$, $^{1}/_{4}$, $^{1}/_{8}$). Use operations on fractions for this grade to solve problems involving information presented in line plots.

fractions by nonze	ero
whole numbers ar	
division of whole	
numbers by unit	
fractions.	

^{*}EnVision Textbook Series

	Topic Covered 2016-2017
1 st Nine Weeks	1, 2, 3, 4,*
2 nd Nine Weeks	5, 6, 7, 8,*
3 rd Nine Weeks	9, 10, 11,*
4 th Nine Weeks	12, 13, 14, 15, 16,*

^{*}Measurement instruction will be ongoing throughout the year (morning work, bell ringers, centers).